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Foreword

This document is submitted as an interim report covering the
second phase of an experimental investigation of a radial face seal.
It contains a description of the experimental apparatus as well as
a description of a theoretical analysis along with the results
of both theory and experimentation. Support for this work was
provided by Contract N00014=-75-C-390 with the Office of Naval Research.

This report was submitted "o the University of Tennessee by
I. W. Swafford in partial fulfillment of the requiremente for the
Master of Science Degree; it is presented here with minor changes
in format.

Appro ved(:x -—-\Q‘M{q{\

H, J. WilkeFson\
Project Manager
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ABSTRACT

A complete description concerning the interface region of 2
parallel radial face seal has been conducted both experimentally and
analytically. Analytical predictions stem from a F@RTRAN IV
computer program designed such that density and viscosity variation
with temperature can be simulated. The equations cf motion were
solved on an incremental basis to yield a "closed form, finite
difference” solution. For comparison purposes, predictions assuming
non~temperature dependent fluid properties are also given.

Experimentally determined parameters include vertical load,
torque,lintcrface pressures, and temperatures, while interface
clearance, supply pressure, and rotational speed were externally set
parameters affecting seal performance. Unlike most other investigators,
the test seal was rigidly mounted and both surfaces were constructed
of stainless steel.

Numerically predicted temperature dependent and nouh-temperature
dependent fluid property pressure profiles deviate sut ;tantially
when fluid temperature rise becomes significant; thus decreasing the
load carrying capacity of the seal. Predictions involving a
temperature-~dependent fluid indicate higher Jeakage rates and
lower torque values when compared to predictions assuming a non-
temperature dependent fluid.

Experimental testing was carried out under several sealing
conditions. Supply pressures ranged from 17.1 to 87.5 psig (1.18

5

x 10° %o 6.03 x 10 N/mz) while average clearances and rotational
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speeds ranged from 1995 to 3528 micro-inches (50.7 to 9.6 microns)
and from 0 to 1520 rpm, respectively.

Vertical loads obtained experimentally were normally lower than
those predicted although differences decreased at higher supply
pressures. Experimentally determined torque agreed favorably
with theoretical predictions while measured leakage rates were
.onsistently lower than those predicted by theory.

In contrast to several past experimenters reporting doubly
fluctuating components of clearance and pressure per shaft revolution,
this investigation revealed but a single clearance and pressure
oscillation per shaft revolution. Measured average pressure
va. ues agreed somewhat with predictions although significant

differences were noticed at high speeds and low clearances.
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CHAPTER I

INTRODUCTION

The parallel radial face seal, shown in Figure 1, has been the
subject of numerous investigations in past years both from the stand-
point of experimental and theoretical aspects. The process by which
the seal actually operates remains basically somewhat of a mystery.
Some of the early investigators were interested in merz=ly establishing
that a continuous fluid film actually exists between the two sealing
surfaces. This hypothesis is generally accepted as valid although
boundary lubrication may occur under certain conditions. Other
experimenters were primarily interested in a more complete analysis
of the interface conditions such as pressure and temperature profiles,
frictional torque, wear, leakage rate, loading, and film thickness.

Some theoretical analyses have agreed favorably with
experimental results with respect to leakage rate, frictional torque,
and pressure profile. However, most of these tests were carried out
under conditions where fluid temperature rise was insignificant. It
is the overall purpose of this thesis to present and compare both
theoretical arnd experimental data concerning the radial face seal,

The theoretical data will take into account the possibility of

temperature dependent fluid properties.
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Review of Literature

Some of the earliest and most extensive research concerning
radial face seals was carried out in 1960 by Denny (1), who was mainly
concerned with studying the interface pressure profiles and clearances.
Denny's experimental seal was artificially loaded by either a pneumatic
piston or a lever-fulcrum system and clearance was determined by a
capacitance method. Interface pressures were measured with pressure
taps located radially around the seal. Also, to gain some idea of
the irterface temperature profile; thermocouples were also placed
radially around the seal and lapped flush with the stationary carbon
face. The leakage rate was ditermined by volumetric measurement over
a period of time.

Denny's results indicated a number of interesting points, on< of
which was the ability of the rotating seal to withstand considerable
loading with no pressure difference across the seal face (i.e., the seal
was simply submerged in an oil bath and rotated). This was apparently
due to a cyclic "generated pressure" at a frequency twice the rotating
shaft speed. Also, the clearance appeared to fluctuate similarly to
the pressure with peak clearance 180 degrees out of phase with the
shaft rotation.

This generated pressure was deemed the cause of the gseal to
develop a radially inward pumping action. In some cases, this pumping
action was sufficiently strong to induce a flow against a substantial
pressure difference. In all tests conducted, the pressures measured
were higher than predicted by theoretical analysis. However, frictional

torque and leakage rate agreed somewhat with theory.




Denny's work conflirmed the existence of a fluid film in a
properly operating face seal but failed to define precisely what
produces the actual sealing mechanism.

The following year, Ishiwata and Hirabayshi (2) suggested that
an ¢0il film would not occur naturally between two perfeccly parallel
surfaces but would appear, due to an oil wedge, if the two surfaces
were actually wavy. Although no interface clearance measurements were
attempted, a number of other parameters were recorded. Frictional
torque was determined via a spring balance system. Surface (carbon)
temperature was measured by embedding thermocouples in the stationary
surface, The waviness and roughness of the sealing gurfaces were
determined by an interference-microscope and an optical flat employing
sodium light, Seal performence was evaluated by examining the sealing
surfaces by regular intervals. Seal leakage was measured rather
uniquely by illuminating the contact part of the seal with ultraviolet
light from a high-pressure mercury vapor lamp. When the oil emerged
from the seal cavity, it fluoresced under the ultraviolet light, thus
making it easily detectable.

Ishiwata's and Hirabayshi's coefficient of friction results were
somewhat scattered in spite of the fact that some tests were carried
out under identical conditions. They noticed that the friction
coefficient decreased with increagsed loading employing motor oil but
had a tendency to increase with load when gpindle oil was used. They
also noted that friction was lower when leakage occurred than when the

seal was operating in a sealing mode.
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Also in 1961, Summers-Smith (3) was conducting research with
regard to the radial face seal. Like Ishiwata and Hirabayshi,
Summers~Smith determined frictional torque employing a spring balance
gystem. The sealing apparatus was loaded artificially with the aid of
a system of pulleys and weights, Similarly to some other investigators,
water was used as the fluid sealant. Although direct measurement
of interface temperature was not attempted, it could be estimated from
a series of thermocouples embedded at different depths normal to the
sealing surface.

Friction and wear studies resulted in the conclusion that a fluid
film of thickness of approximately 100 micro-inches was generated.
Another result was that in a preoverly operating seal, leakage was
extremely smalli and when volatile liquids were used as the sealant
the leakage takes place by evaporation., Summers-Smith concluded his
study by stating that the mai. limitation to the use of radial face
seals at high pressures and ro:ational speeds is the temperature rise
of the fluid film, i.e., when the fluids viscosity decreased resulting
in a decrease in clearance, viaporization of the liquid may occur
resulting in boundary lubrication.

Similar to Denny, Batch and Iny's {4) face seal investigations in
1964 revealed the twice shaft speed fluctuation of film thickness
and pressure (pressure increased as film thickness decreased and vice-
versa). Also like Denny, Batch and Iny used a carbon stationary
face and determined clearance by a capacitance method. However,
unlike Denny and other previous investigators, interface pressures

were determined by piezo-electric pressure probes mounted behiund a
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thin diaphragm, thus leaving thé fluid film undisturbed. Similarly
to Summers-Smith, interface temperature was estimated from a bank

of thermocouples normal to the sealing surface (temperature across the
fluid film was assumed constant). The seal was loaded artificially
by a pneumatic piston and leakage determined by a volumetric method.
However, due to the experimental apparatus used, frictional torque
measurements were not attempted.

The aforementioned film thickness fluctuation was found to be
independent of supply pressure, speed, and temperature but was affected
by seal loading. The fluctuations were concluded to have been induced
by small vibrations of both faces.

Although Batch and Iny's work did not establish the sealing
mechanism, the confirmation of pressure and clearance fluctuations
was of valuable use to future invesgtigators,

Also in 1964, Bremmer (5) conducted a study of stationary face
seals operating in the purely viscous flow regime. Employing a
modified form of the Reynolds number (puhzluRz) as a flow criteria,
he experimentally determined leakage rates, vertical loading, and
pressure profiles. The majority of tests were carried out at an
externally set clearance of 0.003 inch.

Again simdlarly to Denny, Bremner determined pressure profiles
with radially spaced pressure taps. Although temperature profile
measurements were not attempted, an average operating temperature
could be estimated by the oil outlet temperature. Loading was
determined by measuring the inlet and outlet pressures.

Bremner's pressure profile and leakage rate results agreed

somewhat with theory although viscosity change due to temper:ture rise
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resulted in non-linear experimental relations influencing the leakage.
Results also indicated that the modified Reynolds number was
appropriate for at least an initial evaluation of the validity of
the purely viscous flow relatiomns.

In 1968, Pape (6) conducted research primarily aimed at studying
the lubrication mechanism in face seals. His experimental apparatus
consisted of a rotating and stationary piece similar to other
experimenters. The seal was loaded artificially by a pneumatic
piston. Torque was measured by a strain gage torque arm and
clearance determined by a capacitance method. Unfortunately, due to
the temperature sensitivity of the clearance measurement system,
accurate film thickness values were unobtainable, Pape did not attempt
to obtain local interface pressures but did determine film temperature
by placing thermocouples 0.025 inch below the stationary face. Much
attention was paid to obtaining local film temperatures by employing
extremely small thermocouples and insulating the area immediately
surrounding each thermocouple, The error in temperature readings
was estimated at being no more than 1°C,

Similar to past investigators, Pape's results indicated a twice
shaft speed fluctuation of gap size, apparently due to surface
waviness. Since experiments yielded good reproducibility, he concluded
that unreliable results obtained by other experimenters could
possibly have been due to an ever-changing surface topography of the
stationary carbon face,

Pape also conducted a theoretical analysis assuming that the
sealing surface macroroughness accounted for the observed data and

concluded that results indicate strong support that the concept of




considering the aforementioned sealing surface macroroughness is of
major importance in the analysis of face seals.

Stanghan-Batch (7) performed experiments in 1370 primarily
to attempt to account {or the way in which a face seal develops a
fluid film between the two sealing surfacea: His experimental seal
closgely resembled that of commercial face seals. Employing a
stainless steel stationary disc, the seal was artificially loaded
with the aid of a pneumatic piston. Thermocouples were embedded
0.25 mm from the sealing surface to give some indication of the
interface fluid temperature. Film pressure was determined hy
plezo-electric pressure transducers mounted immediatelv btehind a
thin diaphragm. A capacitance method using a carbon rotating face
determined the film thickness,

Stanghan-Batch's results indicated that the hydrodynamic process
is induced by surface waviness of one or more of the seal faces.
Again, the twice shaft speed fluctuation of clearance and pressure
was noticed, apparently due to the wavy surfaces.

In 1971, from a purely theoretical standpoint, Wilhelm (8) v-ed
an order of magnitude analysis to derive equations of motion from
the Navier-Stokes equations for both laminar and turbulenat flow in a
radial face seal. For reasons of simplicity, the possibility of
variable fluid properties and surface waviness was not considered.
Greater emphasis was put on the study of leakage rate than any other
seal parameter.,

Wilhelm concluded that for laminar flow, inclusion of the

centrifugal inertia term only is adequate for most sealing conditions.




He also concluded that tlie inertia term tends to increase leakage 1if

pressure flow is outward and decrease leakage when pressure flow is

inward.

-% | Before Wilhelm, in 1964, Snapp (9) did an analytical study of

' fluid films between sealing surfaces of mechanical face -eals for aix
radial profiles: parallel, converging, diverging, anc chree types of
parabolic profiles. His studies developed equations to evaluate

the effect of seal contour on pressure profile, total seal vertical
load, film thickness, and leakage rate. Assumptions used in the
investigation were (1) laminar flow prevailed; (2) the fluid is
Newtonian and incompressible, (3) the pressure is constant across the
film thic ness, (4) velocity varies in both the radial and tangential
directions, (5) constant fluid properties, and (6) there is no
circumferential variation of pressure.

Snapp’s results indicated that a departure from parallelism

within the seal cavity has a significant effect on face seal performance
parameters, particularly on the face loading, primarily due to
differences in pressure profiles.

Late in 1974, Kiber (10) performed an experimental investigation
involving a radial face seal. This study was rather unique in that
all data were collected without disturbing the fluid film, Clearance
was determined by two inductance type prcbes mounted behind an
epoxied-in-place diaphragm, outlined in detail Ly Duncan (11).
Capacitance pressure probes mounted similarly to the clearance probes
were employed to measure interface pressure. Torque and vertical

load were determined by strain gages mounted in an instrumented pilece to
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which the stationary seal face was attached. Leakage measurements
were not obtained.

Due to the physical condition of the stationary seal face,

T,

Kiber's tests were limited to relatively large clearances. This °

B e

apparently was partly the reason for poor frictional torque data as
compared to predicted results. (It should be noted that predicted
results referred to here are from the computer program to be presented
in Chapter II1.) Also, the sensitivity of the torque strain gages

was insufficient to sense small frictional rhanges from the null
position.

Studies showed that the clearance probes employed by Kiber
are pressure-sensitive as well as temperature-sensitive. Thus,
clearance readings were observed before pressure was applied to the
system, Also, as stated earlier, aince the clearances at which tests
were conducted were large, any temperature effects on clearance
readings were neglected.

The measurement of local interface pressures by the capaciiance
method produced numerous uncertainties and problems in obtaining
reliable pressure data. Due to these difficulties, only one inter-
facial pressure probe was operational. Pressure readings from this
probe agreed somewhat poorly with predicted results. Also, vertical
load measurements were consisteatly lower than those predicted.

K*‘ber concluded that inconsistencies in computed and measured
data were due to the experimental calibration constants. That is,
the sensitivities of certain probes (particularly that of frictional

torque and vertical load) were too small to record minute changes




11
from the zero condition. In addition, extensive temperature profile
presentation was omitted from Kiber's report because of the above

inconsistencies.

Statement of the Problem

With some refinements, the experimental portion of this thesis
is basically a continuation of Kiber's work. Commercially available
strain gage pressure probes were used instead of the capacitance
type probes empioyed by Kiber., A machined-in-place diaphragm was
employed in place of Kiber's epoxied stainless steel diaphragm.
Also, a new compound was employed in the installation of the
clearance probes which is substantially harder than the epoxy previously
used, Leakage was monitored by a volumetric type measurement systenm,
by which longer run times were permitted. The torque strain gages
were recalibrated such that smaller frictional effects could be
monitored. The vertical load signal amplifier gain has been increased,
increasing load measuring sensitivity.

As mentioned earlier, Kiber compared his results tuv a computer
program developed by this author which permitted the possibility of
temperature dependent fluid properties. This program will be examined

in detail in Chapter II.




CHAPTER II

THEORETICAL FACE SEAL ANALYSIS

General

Development of the equations of motion and an accompanying
numerical analysis concerning fluid flow within the sealing cavity
of a radial face seal will be presented in this chapter. Since
: flow involving two relatively rotating surfaces is the subject of
analyeis, a cylindrical coordinate system is employed. The

coordinite system and flow variables are given in Figure 2.

Pertinent Assumptions

Similar to those of Snapp (9), the assumptions important to the

i analysis are:
1 1. Laminar flow prevails.
2. The iiquid is Newtonian and incompressible.
E 3. The pressure is constant across the film tldckness.
4, The fluid velocity varies in both the radial and
tangential directions.
5. The fluid properties, density and viscosity, are
functions of fluid tempera. re.
6. There is no pressure variatiow. in the tangential direction.
7. Steady state, steady flow conditions prevail.

12
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8. Hydrodynamic entry length is assumed to be small in
comparison with the total flow distance. This is a
reasonable assumption for high Prandtl number fluids.

It should be noted that the possibilit%es of sealing surface

waviness and surface roughness are not taken into account.
Development of Analytical Model

From the fluid element shown in Figure 2, by summiny forces in
the radial direction and considering parallel and smooth surfaces,

the following relationship is obtained:

2
-a—r---a—y'-Drmf='0G (@B

Equation (1) was derived also by Smeck (20, 21) from an order of
magnitude analysis. Further modification of Equation (1) is
accomplished by fixing the radius r and working across tlie film

thickness h. Substituting Newton's law of viscous fluids for laminar

flow,
du
. r
Ty
iquation (1) now becomes
2 Yy
i —a——;--prw§=0., (2)
y

Since the pressure is assumed to vary in the r-direction only, and

for a given radius r, u, = ur(y) only, Equation (2) becomes

dzu

1P r 2
FT u p 7 - prwf 0. (3)

Consider now the assumed velocity profile in the tangential

direction, shown in Figure 3.
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Figure 3. Tangential Direction Velocity Profile.,

To satisfy the no-slip conditions at the upper and lower seal

surfaces, it is seen that
= (L
G, - 4)

Substituting the above into Equation (3) and integrating twice,

it is seen that

2
1[31;rz_°r“’2ya+cly+cz 2
12uh
Again from the no-slip condition at the upper and lower seal
surfaces, Cl and C2 can easily be determined, yielding
1 2 prug 3
v = 5n ol - ) - 12uh? (y B ©

The volumetric flow rate (at any radius r) can now be determined

from

h
Q=2mr [ udy. @)
(o]

o PR ¥ ) oy N . N . 3 2 .
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%& Substitucing and integrating,
g )
3 3prw -
Trh 8 dpP
0= o - @ (8
or 2
[QB] - Eiffﬂ _ 6w , . )
dr'r 10 ﬂrh3
By combining the mass conservation principle for steady flow and
Equation (9), it is seen that
r = R2 r = R2 D r = R2
/ dp = %wi / prdr - Gl J %Sl-:_; o (10)
r = R1 r = R1 Th™ r = Rl

From the standpoint of variable properties, integration of Equation
(10) would require that density and viscosity be known as a function
of radius r. Most analytical solutions previously of fered have made
the assumption of constant properties and integrated across the
total seal radius. For large clearances and supply pressures, the
constant property assumption is normally adequate, However, at
clearances which a face seal normally operates, the friction shear
stress on the fluid is considerable and would impart a significant
energy input to the fluid causing a notable temperature change.
Consider now integration of Equation (10). Over a very small
increment of radius Ar, the fluid properties would remain essentially

constant., Thus,

r=1r + Ar r=1r+ Ar r=r1r + Ar
I dp = %5 wz P f rdr - 92%— I %E
r =r 5 r =1 ﬂhp r=rvy
or
-3 2ol _ bmi_ Ar
P iar = Br 30 wsp(Ar + 2rlr) 3 1n 1+ (11)

Toh
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Having determined dp/dr (evaluated at any radius r), the volumetric
flow rate can be found from Equation (8).

For the determination of seal moment and the accompanying
temperature rise, Newton's fluid shear equation is again employed to

yield

2ﬂws 3

dM = yr~dr. (12)

Integrating similarly to Equation (10) and multiplying by w, gives

the friction energy as

s’ 3 2 3 4
Ep = =5 [4r°Ar + 6r20r” + 4rde” + Ar'], (13)

In addition, the change in flow energy (flow work) due to the
change in pressure must be accounted for by

E, = Qi (14)

where AP is given by Equation (11).

Assuming that all the input energy is absorbed by the fluid
(i.e., no heat is convected to the seal), the temperature rise is
predicted by the energy equation as

E. +E
T f

T - = °
r+Ar r oC

(15)

! P

Having determined this temperature difference, the fluid properties
at r = r + Ar can readily be evaluated, assuming that the "initial
conditions" at r = r are known.

From the continuity equation

n = prQr = pr+ArQr+Ar = constant, (16)

it is noted that a change in fluid density would necessarily dictate

that che voluemtric flow rate also change to satisfy Equation (16).
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Thus, with each evaluation of conditions at r = r + Ar, a new value
of volumetric flow rate must be determined to compensate for the

aforementioned density change and flow area change.
Calculation Technique

A FQRTRAN IV computer program has been developed to evaluate
temperature, pressure, vertical load, and torque as a function of
radial distance from the seal centerline, Initially, a mass flow rate
is determined urder the assumption of constant properties for a
first approximation. Employing an assumed incremental value of Ar,
pressure, volumetric flow rate, torque, temperature, density,
viscosity, and mass flow rate are found at r,=r + Ar., If the mass
flow has cnanged significantly, the process is repeated with a smaller
Ar until less than one percent change is noticed.

When the outside seal radius is reached, the pressure is checked
against the zero exit pressure criteria. 1f the pressure is
significantl; Jifferent from zero, a new trial mass flow rate is
calculated in proportion to the error in the pressure diffezence.
Employing this new mass flow rate, the en:ire process is repeated
until the exic pressure is sufficiently close to zero (within plus
or minus one percent). A flow chart describing the calculation
technique is shown in Figure 4 (a more detailed discussion of the

program is given later in this chapter).
Mathematical Modeling of Tewperature Dependent Fluid Properties

To apply the above model to a physical fluid, the fluid'e

properties needed to be determined as a function of temperature.
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Gulfspin 38 oil was chosen as the working medium for the associated
experimental investigation.

In determining oil density as a function of temperature,
specific gravity was measured (using a Weatphal Balance) at varying
temperatures yilelding a linear relationship, shown in Figure 3.

For a mathematical relationship, a least squares polynomial curve

fit gave the following:

- _ =4
; oil = szo[ (4.057 x 10 ")(T) + 0.,9031] (17)

STP STP
where the oil temperature T is measured in degrees Rankine.
Viscosity on the other hand was determined as a function of
temperature via a Saybolt Viscometer., From Fuller (12), the form

of the equation of viscosity was suggested as:
vV = antilog10 antiloglo[n loglO(T) +Cc] -0.8 (18)

where T is8 again measured in degrees Rankine. From plotting Saybolt
Universal Seconds (SUS) versus oil temperature, the constants in
Equation (18) were found to be

n = - 3,80466
and

C = 10.53812.

Having determined Equations (17) and (18), computing numerical
values of the oil properties at each incremental radius became a simple

matter.
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Detailed Discussion of Computer Program

General

The program used in this study is found in Appendix A. It was
run on the IBM 360/65 digital computer at the University of Tennessee.
In addition to the basic program, a CALCOMP plotting routine is also
included. It ..as used by the author to gain knowledge of trends
concerning the numerical results without actually examining the many
numbers which were generated.

It was necessary to run the program in double precision to
obtain the greatest possible accuracy in determining the mass flow
rates and pressures which were the instrumental variables in making

the program operational.

Boundary Conditions

As mentioned earlier in this chapter, there were primarily
two important boundary conditions to be met before any solution satisfied
the physical flow criteria: (1) the pressure profile had to be such
that the exit pressure corresponded to that physically present -
atmospheric in this case, and (2) the continuity relacionship was
satisfied throughout the total flow area of the seal.

This type of relationship necessitated that "one must know the
solution before one can find the solution." That is, the correct mass
flow rate had to be known at the beginning of the calculation process
such that the zero exit pressure criteria was met. This waa accomplisghec,
basically by a trial and error method to be discussed below.

After inputting sealing conditicns for a particular run which

are supply pressure (PPLD), film thickness (H), seal rotational speed

i

i A
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(RPM), and inlet oil temperature (TFIRST), an initial mass flow

rate assuming non-temperature-dependent fluid properties is
calculated in SUBRAUTINE MASS1 as a first approximation (the flow
chart previously mentioned will be extremely helpful to the reader in
following the program logic). After an initial Ar of 0.005 inch is
assumed, density and viscosity (RH$ and NU, respectively), pressure
(PNEW), volumetric flow rate (Q), torque (MPMENT), friction energy
plus flow work (EF), and temperature rise (T) is calculated employing
Equations (11) thvough (16) at the new incremental radius. New oil
properties, thus a new mass flow rate at this radius is calculated by
SUBRAUTINE CHECK1. The newly calculated mass flow rate is then
checked against the old mass flow and if more than one percent change
is noted, the process is repeated with a smaller value of Ar (DELTAR)
calculated in SUBRQUTINE FIND. If less than one percent change is
found, the calculated values of the above variables are printed by
SUBRGUTINE FOUNL {the program is designed to print out data every
0.01 inch of radius), provided that the zero exit pressure stipulation
is met. In other words, no calculated data are printed out until

the correct mass flow rate has been determiued.

The above prc-ess is repeated until the outside seal radius (R2)
is reached. The pressure at R2 is checked to within plus or minus oue
percent of zero (atmospheric) pressure. If the exit pressure differs
significantly from zero, a new trial value of mass flow rate is
determined by SUBR@UTINE MASS2 in 1-oportion to the error in calculated
exit pressure. This step was found to provide a radical improvement

on convergence to the correct value cf mass flow.
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Finally, for comparison purposez, SULKWTINE CPNPRP calculates
seal parameters assuming non-temperature--dependent fluvid properties
across the total seal flow area.

As a final note, it should be pointed out that the temperature-~
dependent fluid property portion of the program calculates vertical
load in a different manner than the non-temperature-dependent fluid
property subroutine, If non-temperature-dependent fluid properties
are assumed, Equation (10) can readily be integrated to yield pressure
as a function of radius r., Thus, total vertical load can be deter-
mined from the relationship

r=R

L=21 [ 2rP(r)dr. (19)

r = Rl

Figure 6 shows an exaggerated view of che upper (or lower) sealing
surfaces. Having calculated the prassure at the outer incremental
radius, the inner and outer pressures are averaged and multiplied by
the incremental area, thus yielding an incremental value of vertical

load. As the results will show, when temperature rise fé insignificant,

the two methods of vertical load calculation have excellent agreement.
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CHAPTER III

EXPERIMENTAL FACE SEAL TEST RIG AND INSTRUMENTATION

General

The expecimental test rig along with all associated
ingtrumentation is located in the dynamic sealing laboratory of the
Mechanical and Azrospace Engineering Department of the University of
Tennegssee. The test rig and instrumentation will be described in
this chapter with some detail; however, for a more detailed desacription
of the associated experimental apparatus, particularly that concerning

the instrumentation, the reader is referred to Kiber (10).

Test Apparatus

Figure 7 shows the basic experimental test rig. It has been
designed such that a considerable wide range of sealing conditions
can be simulated [see references (13) and (14) for the basic design].

The actual test seal, described in the next section, is mounted
to an instrumented piece, Figure G, which in turn is secured to a
vertical support column. The zupport column is attached to a
horizontal plate whose movement is controlled by three vertical
adjustment columns. These three adjustment columns dictate the amount
of tilt and clearance within the actual seal cavity. Between the
vertical support column and horizontal plaic is a set of adjustment

screws by which the support column can be corrected for any

27




H
28
' Hold down rig
; ¥y
-
g - I |
fé Top plate
:' 1 é—éh T I
— — — Support
— |
—— ,:Z;:j column
Vertical N\ forizontal l
eFt ca djustment | Instrumented
adjustment === | __—

section

L

l Bage plate d

Floor
plate

SCR drive i
T—l—-l

9 < d
ﬁav£7 9 Q _— < o g ) 0 q Q0 © b’0 - O;

o ,Quoagvﬁooqoo‘g

Figure 7. Test Apparatus,




T 29

4.5 in. 0.D, Mounting Flange

" 0.051in. strain gage
attachment section

- t—— 011 inlet

attachment

|‘" 1.062 in:"
[$—— 2.0 in, —-"\ Stationary seal

mounts here

Figure 8. Instrumented Section.




30
misalignment between the stationary and rotating seal surfaces.

The instrumented section previously mentioned is fitted with
two complete sets of strain gage bridge resistance circuits. Cne
of these circuits, which consists of foil type gages, is for vertical
load meagsurements while the other circuit, consisting of piezo-
electric type gages, is for the determination of frictional torque.
Figure 9 shows the manner by which these gages are physically
located on the instrumented section,

An air spindle is the means by which the rotating seal surface
remains in a flat horizontal plane. A varaible speed SCR drive
system provides the necessary range of rotational speeds needed for
a complete simulation of face seal operation.

A newly installed pressurization and leakage rate measurement
system, shown in Figure 10, is the means by which lubricant is supplied
to the sealing apparatus. Two calibrated gage glasses are employed
to determine leakage rates by volumetric analysis.

A Precision Measurement Company strain gage pressure transducer
monitors the oil supply pressure prior to entering the instrumented
section. Also, an oil filter located just upstream of the supply
pressure transducer provides a means of final filtration before the
oil actually flows through the seal. '

To prevent any vertical movement of the horizontal plate,
a hold-down rig was installed. This was necessary due to the "play"
which was found to be in the joints of the vertical adjustment

columns and the horizontal plate.
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As statel earlier, Gulfspin 38 oil was chosen as the working
medium for the experimental investigation. Viscosity of this oil

is approximately 0.3294 x 10-'5 reyn at 25 degrees Celsius.
Test (Stationary) Seal

The stationary test seal used in this investigation is the end
result of numerous seal fabrications. Shown in Figure 11, the test
seal was machined from 316 stainless steel. With the seal in
unfinished condition, the clearance probes were installed employing
Devcon Aluminum Putty as the adhesive base. After clearance probe
installation was accomplished, the sealing surface was slightly
lapped. The step-by-step clearance probe installation procedure
is given in Appendix B. Al, B2, C3, E4, and F5 refer to clearance
prc .es in Figure 11. Clearance probe E4 was found to be inoperative
after installation. This was probably due to the probe being shorted
to the test seal itself.,

After the initial lapping, five holes 0.150 inch in diameter
were drilled from the sealing face side to accommodate installation
of the pressure probes referred to by SPl, SP2, SP3, SP4, and SP5,
The pressure probes, shown in Figure 12, were commercially available
Precision Measurement Company Model 150 strain gage pressure
transducers, consisting of a strain gage epoxied to a thin diaphragm.
The pressure probes were installed such that approximately 0.002 inch
protruded past the sealing surface. Again, Devcon Aluminum Putty was
utilized as the adhesive base. After this assembly had thoroughly
hardened, the sealing surface was lapped flat, thus removing the above

protrusion. Unfortunately, one of the pressure probes (SP4) was
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destroyed during this process, and was probably caused by an excess
amount of the probe protruding from the sealing surface. After this
final lapping, the seal face was checked with an optical flat and
" was found to be approximately eight sodium lightbands (350 micro-
inches) out-of-flat. The surface roughness was also checked and

was found to have a CLA roughness of approximately 2.5 micro-inches.

Rotating Seal

Figure 13 shows the dimensions of the rotating pilece used in
this investigation which defines the sealing geometry. This piece
was constructed similarly to the stationary piece in that it was
machined from 316 stainless steel. After wachining, the seal face
was lapped and tested with an optical flat for degree of flatness.
The optical flat revealed that this piece was approximately two
sodium lightbands (90 micro-inches) out-of-flat. Similarly to the
stationary seal, the CLA roughness was determined to be approximately

2.5 micro-inches.

Instrumentation

As described by Kiber (10); the instrumentation concerning
this investigation consists of signal conditioning units, amplifiers,
and recording devices. Since signals concerning the clearance probes
were externally conditioned, no signal conditioning was required
for measurement of film thickness. However, torque, vertical load,
temperature, and pressure output was too small to be sensed directly;
hence, signal conditioning had to be utilized in order to obtain a

usable data acquisition system.
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The main instrumentation conscie, shown in Figure 14, is a
Honeywell 24-channel oscillograph recorder. It contains strain gage
signal conditioning units, low and high gain amplifiers, millivolt
or thermocouple input signal conditioning units, and an oscillograph
recorder. Also, due to an insufficient number of high gain amplifiers
in the main console, two additional units containing thermocouple
signal conditioning devices and high gain amplifiers were needed to
complete the data acquisition system. These two additional units
are not shown in Figure 1l4. An external signal can reach the
galvanometer by one of two routes, both of which are shown in Figure
15 (only two signals were routed through the Reproduce BNC Jack in
this investigation). Table I shows a summary of signal conditioning

device name, abbreviation, and purpose.

External Transducers

Interface and Supply Pressure

As previously mentioned, the interface and supply pressure
transducers consisted of Precision Measurement Company Model 150
strain gage pressure transducers with a 120! strain gage epoxied to
a 0.150-inch-diameter diaphragm. The transducer to monitor
supply pressure was secured in a stainless steel pipe plug (again
with Devcon Aluminum Putty) with epproximately 0.002 inch of the
transducer protruding from the plug. The transducer diaphragm was
then lapped flush with the plug to provide a smooth, even surface.

Interface pressure was measured simllarly to the supply pressure
in that the transducers and the installation procedures were

identical.
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TABLE I

SIGNAL CONDITIONING OUTLINE

Unit Name Abbreviation Purpose

Accudata 105 A-105 Strain gage signal coaditioner

Accudata 106 A-106 Millivolt input or thermocouple
input

Accudata 117 A-117 Low gein amlifiers

A20B A-20B High gain amplifiers
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Interface Clearance

Measurements of interface clearances in this investigation were
made possible by the work of Duncan (11) with a non-penetrating
inductance type clearance probe. Integrated with a substantial
amount of electronic equipment, the probe provided a voltage output
which was fed directly into the recording galvanometers.

Each clearance probe consisted of two pickup coils centered
withiu two drive coils. Basically, a magnetic field is produced oy
the drive coils which induces eddy currents in the seal face which
in turn induces a magnetic field in opposition to the drive coil
magnetic field, The magnitude of this eddy current field is a
function of the gap size between the two sealing surfaces. The two
pickup coils, which are wound in opposite directions, are abl. to
gense an induced voltage which is proportional to the total magnetic
field of the drive coils plus that due to the induced eddy current.
This total magnetic field is actually a vector difference between the
drive coil field and the eddy current field. Since the pickup coils
are wound in opposite directions, the voltage which appears at the
probe output is actually the difference between that induced by each
pickup coil thus producing a differential output signal from the
probe. The associated electronic equipment then converts the amplitude
modulated sine wave from the probe into a vC voltage which is a linear
function of the clearance betweeu the two sealing surfaces. Each

probe has its own individual electronic null network which allows a

zero voltage output at axv clearance — in this case, zero clearance.
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Diaphragm Temperature

With the aid of copper-constantan thermocouples, the actual
interface fluid temperature could be estimated. One thermocouple
was embedded inside each of the five clearance probes. Great care
was taken so as to be sure that each thermocouple was as close to the
bottom of the clearance prcbe as possible. This was to ensure that

the thermocouple was in contact with the 0.005-inch diaphragm.
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CHAPTER IV
INSTRUMENTATION CALIBRATION
General

Before any usable data concerning seal interface pressure,
temperature, frictional torque, vertical load, film thickness,
supply pressure, and leakage rate could be obtained, the various
measuring devices had to be callbrated against known values of
each respective variable. As with any experimental investigationm,

the data obtained are as valid only as each calibration represents.
Supply Pressure

The initial tests concerning the calibration of the supply
presgure transducer were performed employing a Vishay Instruments
Model P-350A strain indicator. Since the transducer was located
upstream from the seal cavity, the oil outlet was simply plugged
in order to obtain a static calibration system.

After an appropriate value of the internal calilbration
resistor (denoted by Rcal) wag determined, the supply pressure
transducer was ready to calibrate in terms of galvanometer deflection,
This was accomplished by employing a Bourdon tube pressure gage
previously calibrated using a dead weight tester (for the Rce

1

calgulation method and actual Rca values, plus calibration curves

1

concerning all instrumentation, the readexr is referred to Appendices
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C and D, respectively).

s Interfacial Pressure

Interface pressure probe calibration consisted mainly of
devising a means by which the sealing cavity could be statically

sealed. This was accomplished by fabricating an O-ring placed inside

a confining plexiglass ring.

After Rcal values had been calculated for each interface
pressure probe, calibration was carried out employing the previously
calibrated supply pressure transducer. These calibration curves are
given in Appendix D,

It should be pointed out that during the final lapping process,
the degree of waviness of the sealing surface caused the diaphragms
of three of the four pressure transducers (SPl, SP2, and SP5) to be
lapped beyond the 0.002-inch tolerance. In addition to making the

probes oversensitive, this apparently destroyed the linear output

characteristics of these three probes.
Frictional Torque

The friction torque strain gages had previously been calibrated
by Kiber. HKHis results, however, indicated that the highest torque
encountered during a typical run wasz . bstantially below the lowest
calibration point on the curve, also predicted by the computer

program described in Chapter II. Hence, a new calibration curve

needed to be determined.
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From the compuced torque results and from the vertical load
effect on the torque strain gages (as shown in Figure 16) an
appropriate RCal value was determined. This being accomplished,
tecrque as a function of oscillograph daflection was obtained
employing the torque calibration rig given ia Figure 17. The

calibration curve obtained is given in Appendix D,
Vertical Load

The vertical load sensing strain gages were calibrated by
Kiber employing a Baldwin SR-4 load cell connected to an Automatican
Industries strain indicator (the vertical load calibration rig
is als» given in Figure 17). The load was applied via a hydraulic
jack. The load ce!' had a known output of 2 micro-inches per
inch for every 1.0 lbf of vertical loading at the appropriate
gage factor. The calibration procedure consisted of setting the
load cell strain indicator to a kunown value of strain and applying
load with the jack until the load cell strain indicator balanced.
The strain readings from the vertical load strain gages were then
recorded at that particular value of load. The calibration curve
resulting from this procedure is also given in Appendix D.

It should be noted that an applied torque did not affect the

output of the vertical load strain gages.
Clearance Probes

Before the clearance probes could be accurately calibrated,

a means by which the actual clearance between the sealing (stetic)
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surfaces had to be devised. This was accomplished by two methods:
(1) by employing a Shefield Proximity probe system and (2) from a
Bentley-Nevada probe system. Basically, the Bentley-Nevada system
was used primarily as a redundant clearance system and for checking
the degree of seal tilt before each testing period.

Initially, the Bentley-Nevada system had to be calibrated
such that for the range of clearances at which this investigation
would take place, the output of the probes would be in their
respective linear range. This was performed on a test assembly with
the probe to be calibrated placed in a test seal which was
dimensionally identical to that used in the actual tests.

From the results of the above tests, the output voltage of each
probe's linear range was determined such that the highest possible
clearance measuring sensitivity could be obtained over the expected
clearance range.

With each external clearance system now statically calibrated,
the clearance probes located within the sealing cavity were now
ready to be calibrated. After the two sealing surfaces had been
indexed, the upper instrumented seal was dropped dowm such that it
was in physical contact with the lower sealing surface. This was
defined as the zero clearance position, Each clearance indicating
system, including that one being calibrated, was nulled for zero
clearance (it should be noted that zero clearance for tl Bentley-
Nevada system was simply a "lower threshold" voltage which was at

the low end of each probe's linear range). By carefully adjusting

the vertical adjustment columns to an indicated clearguce as




e pa

50

determined by the Shefield system, an accurate calibration procedure

bR

had been established. Appendix D shows clearance probe calibration

data. It should be noted that voltage as well as galvanometer

?‘ deflection was plotted as a function of clearance. Probe output
voltage as monitored on a digital voltmeter provided an accurate
means to record individual probe sensitivities on a day-to-day basis

to account for any small changes in system gain.
| Clearance Probe Pressure Compensation

With the experimental test rig in the position for interfacial
pressure probe calibration, the clearance probe output was monitored
for various pressures. Since the actual "delta clearances" due to
pressure were equal to the indicated delta clearance minus the
actual movement of the upper sealing surface, this actual movement
had to be determined., This was accomplished by observing the
Bentley-Nevada output as well as the Shefield system at the above
varying pressures. However, since the Bentley-Nevada probes as well
4 as the Shefield probes were not in the same physical location as the

clearance probes, a method was developed such that movement of each

clearance probe could be determined from the change in clearance

indicated by the Bentley-Nevada system as well as that of the Shefield

system. A brief description of this method is given in Appendix E.
From these tests, Figure 18 was produced. It should be noted

that Kiber observed a linear pressure sensitivity curve, However,

it seems that the compound employed to hold each probe in place

concerning this investigation permitted much less deflection of the
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0.005-inch diaphragm, thus cauaing the pressure sensitivity to

2 decrease significantly.

Flow Meter Calibration

Calibration of the flow meters involved simply taking volume

measurements with respect to the actual glass readings. For

example, when the fluid meniscus was at the 100 mark on the glass,
this volume of fluid was forced out and measured with a 100-ml
graduated cylinder (zero volume was defined as the last reading on
the glass). This procedure was repeated at each major division for
each individual glass. Calibration curves for both glasses are

also shown in Appendix D.

Thermocouple Calibration

The upper sealing surface diaphragm temperature was measured
with copper-constantan thermocouples which had been epoxied inside
and in the bottom of each clearance probe. The probes were then
placed in physical contact with the 0.005-inch diaphragm.

The procedure for thermocouple calibration consisted of
balancing the A20B high gain amplifiers such that a given millivolt
input to the ACCl06 unit would produce a favorable galvanometer
deflection. For this investigation employing copper-constantan
thermocouples, 4.00 mV represented approximately 200°F. Thus,
the A20B amplifiers were balanced such that a 4.00-mV input produced
a 3.0-inch galvanometer deflection. However, this was simpiy an
approximation to yield the appropriate deflection. The actual

thermocouple sensitivities were determined from the +1-mV calibrated
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signal within the ACC1l06 unit. Before and after each experimental
test, deflections produced from this +l-mV excitation were determined.
This yielded the actual millivolt per inch deflection sensitivity

with which each thermocouple responded for that particular day.
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CHAPTER V
EXPERIMENTAL TESTS, DATA REDUCTION, AND RESULTS
General

The combination of each individual measuring device into one
workable data acquisition system was extremely tedious and time
consuming. The experimental procedure involved a substantial amount
of system preparation and calibration. However, after each system
had been nulled and set, data acquisition became a fairly simple

matter.
Experimental Procedure

Before each test period, calibration and zero load deflections
of each strain gage transducer (Rcal deflections) and also of each
thermocouple (+ 1-mV deflections) were obtained. This resulted in
being able to compensate for any amplification gain changes due to
changes in ambient conditions. Also before each test, the
clearance probe system was nulled both of "infinity" and at zero
clearance (the two sealing surfaces had been previously indexed
in order to obtain a consistent reference point).

With the apbove accomplished, the test was ready to proceed.

A test clearance was chosen and the stationary seal set at a value
aslightly higher than the chosen value to allow for the decrease in

54
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clearance due to strapping the top support plate down, At thas
clearance (0 rpm), voltage readings and an oscillograph trace were
taken.‘ Dividing each clearance (indicated by voltage output) by its
oscillograph dcflection produced probe sensitivities in terms of
galvanometer deflection for that particular test.

After strapdown, the rotating sealing surface was turned
through 360 degrees and an oscillograph trace obtained. This trace
revealed a sinusoidal output for each probe indicating the possibility
that the rotating seal's spin axis was not normal to the rotating
sealing surface.

Pressure was then applied to the system (at O rpm) and a trace
was obtained, This configuration (which was a test condition itself)
was the zero torque condition due to the vertical load effect on
the torque strain gages. Flow measurements were obtained via the
oil flow rate measuring system previously described.

The SCR drive was then turned on to the desired rotational
speed and allowed to stabilize. While flow rate data were being
taken, a burst of oscillograph data was obtained at a paper speed
of 120 inches per second. Figures 19 and 20 show typical oscillo-
graph traces obtained in this manner (for reasons of clarity,
individual clearance and pressure oscillograph records will be

presented later in this chapter).
Data Interpretation and Reduction

Reducing the data involved simply measuring the physical

distance each individual trace deflected from its zero load

LM&‘M’\W«W [T N P T RN
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condition during any test. These deflections were then multiplied
by an appropriate calibration constant to obtain physical parameters
concerning each individual measuring device.
However, for data involving strain gages, any amplification
gain changes had to be compensated for by utilizing each Rcal

deilection during the test, This was accomplished from Equation

(20):

i}

(deflection) (calibration comstant) x
Rcal - cal

==
Rcal test

Physical load

) (20)

where

physical load = pressure, torque, or vertical load
deflection = trace deflection from zero position
calibration constant = slope of sensitivity curve

R - cal =R deflection during calibration
cal cal

R - test = R deflection during test
cal cal

However, since calibration curves of three pressure probes
were non-linear, pressure readings had to be read directly from
each calibration curve. Hence, Equation (20) was modified in this

case to become
R.cal - cal
Actual deflection = (Indicated deflection) (

Rcal - test

) (21)

where the above actual deflection was used to determine pressures
from the calibration curves,

1t should be noted that data involving a fluctuating
parameter (such as clearance) were determined at the high and

low points and then averaged to yield a constant component plus a

fluctuating component.
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Any clearance probe system gain changes from that during
calibration was accounted for from the previously mentioned test
procedure (the difference in sensitivities during calibration
and testing were found to be very sma.l).

Interpreting temperature data involved determining the
deflection caused by a +1-mV input to the galvanometers to obtain
each individual millivolt sensitivity for that particular test
period. Thus, from the deflectior determined during a test, a
corresponding millivolt reading wor. calculated and the actual

temperature read from copper—constantan thermocouple tables.,

Tresentatiou of Data — Experimental and Analytical Results

Due to the large amount of collected data, it is felt that
the most efficient means of data presentation would be to examine
and discuss three basic questions:

1. What did theory indicate of itself?

2. What did experiment indicate of itself?

3, How did theoretical and experimental results agree

or differ?

To avoid repetition, some trends concerning both theoretical

and experimental results will be pointed out in the discussion of

how experiment and theory agreed or differed.

Analytical Results

The most significant results of the temperature-dependent fluid
property face seal calculations are shown in Figures 21 through 24

and Tables I1I through V. For comparison purposes, face seal parameters
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TABLE II

THEORETICAL TEMPERATURE DEPENDENT AND NON~TEMPSRATURE DEPENDENT FLUID
PROPERTY VERTICAL LOAD COMPARISONS (P = 100 psig, h = 0.001 inch)

RPM Temperature Dependent Non-Temperature Dependent
Fluid Properties Fluid Properties
Load (lbf) Load (lbf)
500 638.7 681.9
1000 595.0 681.6
1500 564.6 681.1
2000 553.3 680.5
TABLE III

THEORETICAL TEMPERATURE DEPENDENT AND NON-TEMPERATURE DEPENDENT FLUID
BROPERTY VERTICAL LOAD COMPARISONS (Po = 100 psig, h = 0.003 inch)

RPM Temperature Dependent Non-~-Temperature Dependent
Fluid Properties Fluid Properties
Load (lbf) Load (lbf)
500 686.6 681.9
1000 678.6 681.6
1500 671.7 681.1

2000 662.3 680.5
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TABLE 1V

THEORETICAL TEMPERATURE DEPENDENT AND NON-TEMPERATURE DEPENDENT FLUID
PROPERTY LEAKAGE RATE COMPARISONS (P = 100 psig, h = 0,001 inch)

A

RPM Temperature Dependent Non~Temperature Dependent
Fluid Properties Fluid Properties
m_(lbm/min) m(1bm/min)

500 0.057 0.045

1000 0.074 0.045

1500 0.091 0.045

2000 0.106 0.045

TABLE V

THEORET ICAL TEMPERATURE DEPENDENT AND NON-TEMPERATURE DEPENDENT FLUID
PROPERTY LEAKAGE RATE COMPARISONS (P = 100 psig, h = 0.003 inch)

RPM Temperature Dependent Non-Temperature Dependent
Fluid Properties Fluid Properties
n (lbm/min) m(1lbm/min)
500 1.224 1,224
1000 1.256 1.227
1500 1.294 1,233
2000 1.346 1.241




assuming temperature independent fluid properties are also shoun.
It should be noted again that the results presented stem from the
assumption of smooth, parallel, and aligned sealing surfaces.

Figure :1 (page 60) shows the effect of the temperature-dependent
fluid property assumption on the interface region pressure profile.

At low supply pressures and small clearances, the temperature rise

is significant indicating a breakdown of the fluid property

temperature independence assumption. Figure 21 illustrates also

that at higher clearances, the temperature rise is almost negligible,
causing the small differences in temperature-dependent and temperature-
independent fluid property pressure profiles,

As expected, a deviation in pressure profiles indicates a
difference in the load carrying capacity of the seal., Tables II and
111 (page 64) compare vertical load for temperature-dependent
fluids and also for temperature-independent fluids.

To further illustrate the effect of varying viscosity and
density on seal performance, Figures 22 and 23 (pages 62 and 63)
show total geal torque plotted as a function of clearance at various
seal gpeeds for temperature-dependent and temperature-independent
fluids, respectively. Figure 22 illustrates that as the fluid
temperature rise becomes large, its viscosity decreases thus
causing a drop im seal torque at small clearances. However, as
shown in Figure 23 (page 62), calculations involving a non-temperature-
dependent property fluid cannot sense a viscosity change and thus

predict a higher torque at low clearances.
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Another interesting difference of the temperature-dependent
fluid property assumption versus the temperature-independent fluid
property assumption is the temperature of the fluid as it emerges
from the seal. Figure 24 (page 63) shows fluid outlet temperature
as a function of clearance at various rpms for fluid properties
dependent and independent of temperature. Note that at large
clearances and low seal speeds, solutions based on temperature=—
dependent and temperature-independent fluids yield essentially the
same result.

Since the major role of a face seal is to prevent fluid
leakage, a comparison of leakage rates for temperature-~dependent
and non-temperature-dependent fluid properties is in order. Tables
IV and V (page 65) compare leakage rate for various sealing
conditions. At conditions resulting in a low temperature rise, the
two solutions are essentially identical. However, when the
temperature rise becomes significant, there are important differences

in the leakage rates.

Experimental Results

All experimental data obtained during the course of this
investigation are presented first in tabular form in Table VI,
Particular experimental parameters will be compared to numerical
results in the next section.

Trends regarding each individual measuring device will be

discussed separately for clarity.
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Clearance probes. In examining Table VI (page 68), verhaps the

most distinguishable observation is noting that the clearance probes
indicate fluctuating clearances, the magnitude of which decreages with
increasing speed. However, the oscillatory magnitudes remain
essentially constant with regard to varying supply pressures.

These fluctuations were also found by Denny (1), Batch and Iny (4),
Pape (6), Stanghan-Batch (7). and also by Kiber (10). Batch and
Iny's results were contrary to findings concerning this investigation
in that they noticed the magnitude of clearance oscillation to be
independent of supply pressure, rotational epeed; and temperature

but was affected by vertical loading. This study indicates however
clearance fluctuation to be highly dependent of rotational speed.
Also contrary to other findings, this study revealed a single
clearance oscillation per shaft revolution (pressure oscillations
were also noticed which will be discussed later in this chapter).

Tatle VI also illustrates the trend of iicreasing average
clearances with increasing seal rotational speed. Average clearance
also increases with increasing supply pressures.

Examining degree of clearance probe fluctuation once again
reveals that the magnitude of oscillation of clearance probe B2
(which is located on the outermost radius) is always greater than
the fluctuation magnitudes of the other three clearance probes.

This observation leads to considering the possibility that the plane
of the rotating piece sealing surface was not normal to the spin
axis of the rotating piece. This would account for the observed
oscillatory output from all the clearance probes, and also for the

generally equal magnitude of fluctuation of clearance probes Al, C3,
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and F5., It should be pointed out also that magnitudes of oscillatory

clearances generally decreased with decreasing average clearance,
Figure 25 shows individual clearance probe traces taken from

Figure 20 (page 57). This is a representative trace of all clearance

data experimentally obtained. Examination of Figure 25 reveals that

clearance preobes Al, F5, and C3 (which are on the same radius) are
120 degrees out of phase in the order given with clockwise rotation
of the rotating seal. With the same rotational direction clearance
probe B2 lags clearance probe C3 by 25 degrees. The above phase
relationships support the ''wobble" theory regarding the rotating
seal since clearance probes Al, C3, and F5 are physically located
120 degrees apart while clearance probe B2 is located 25 degrees

from clearance probe C3.

Pressure probes. Similar to the clearance probes, Table VII

(page 70) indicates oscillating interface pressures. Oscillatory
magnitudes increased with increasing rotational speed and also
increased with decreasing clearance. Magnitude of fluctuation
regarding pressure probes SPl, SP2, and SP3 (located on the same
radius) remain about constant with respect t> a certain seal rotational
speed.

Table VI also illustrates the trend that average interface
pressures generally (although not always) decrease with increasing
rotational speed. Pressure probe SP2 exhibited this behavior
throughout each testing period. Average pressures measured by
pressure probe SP5 (located on the innermost radius) were always

greater than pressures measured by the other three probes.
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Perhaps the most interesting observation regarding pressure
fluctuation occurred during two high speed, low clearance runs,

16 and 17. Referring to Table VII(page 69), the reader will notice
that the fluctuating components of pressure as measured by SP1l and
SP2 were equal to or went below atmospheric pressure. Also, preesure
probe SP5 noticed pressures higher than the inlet supply pressure
during run 17. These occurrences were also noted by Denny (1);
however; referring back to Figures 19 and 20 (pages 58 and 59)
reveals a single pressure oscillation with respect to shaft rotation.
Other investigators noticed a twice fluctuation of pressure per shaft
revolution. This discrepancy could have been caused by the
experimental seal's rigid mounting whereas other investigators have
employed spring lraded test apparatus,

Figure 26 shows individual pressure probe traces taken again
from Figure 20, Similar to the clearance probes, Figure 26 illustrates
the 120-degree phase lag of pressure probes SPl, SP2, and SP3 for
clockwise rotation; i.e., SP2 leads SPl 120 degrees, SP3 leads SP2
120 degrees, and SPl leads SP3 120 degrees. Again similar to the
clearance probes, the above phase relationships correspond eractly
to the physical location which each pressure probe was installed.

It should be noted also that pressure probe S25 (located on the inner-
most radius) follows the above trend in that phase angle and physical

location correspond (SP3 lags SP5 by 95 degrees).

Leakage rates. Referring again to Table VII,it is seen that

leakage rates increarced with increasing supply pressures but decreased

with decreasing average clearance. Examining leakage data regarding
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Runs 1 through 8 (high clearance) indicates that as the seal
rotational speed increased, mass flow rate increased likewise.
However, a look at Runs 10 through 17 (low clearance) of Table VII
reveals the opposite trend of decreasing leakage rates with
increasing rotational speed. With regard to the latter observation,
it seems possible that the test seal was approaching a sealing

mode during these low clearance, high speed rums. i

Torque. As would be expected, experimentally determined torque

values consistently increased with increasing rotational speeds.

W

Also, with exception to Runs 11 through 13, torque values tended

to increase with decreasing average clearance. It is believed that
the low torque values concerning Runs 11 through 13 were caused by
vertical loading effects which will be discussed with some detail
in the section concerning data comparison.

There is some evidence from Table VII that torque had a tendency
to decrease with increasing supply pressures, Also,; small torque
fluctuations at a "once per revolution" frequency were noted at high
speeds and low clearances. Again, it is believed that vertical load

effects caused this notable observation.

Vertical load. Considering experimentally obtained vertical

load values (again shown in Table VII),it is noted that loads are most
strongly influenced by supply pressure values., It seems that load
values were not affected strongly by speed or clearance. In

general,; vertical load decreased with increasing rotational speed

although not always and not drastically.
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Similar to torque data, small vertical load oscillations
(again at a "once per revolution" frequency) were observed at high

speed, low clearance experimental tests.

Temperature. More detailed temperature data will be given later
in this chapter., Howeve:., certain trends are discussed below which
will be supported by later presentations.

As previously mentioned; experimental testing began with the
seal and oil in thermal equilibrium with ambient conditioas.
Experimental temperature data obtained towards the first of a test
period revealed that diaphragm temperatures tended to increase with
radius. However, as each test progressed, the test seal itself was
heating up, causing diaphragm temperatures towards the seal center to
become greater than those towards the outer seal radius (this
observation was not always true). This indicates that heat conduction
was taking place within the test seal itself,

Further observations lead to the conclusion that the test seal
has a large thermal inertia; i.e., a substantial amount of time was
required for the seal to relinquish the heat generated by the sealing

process.

Compari ons of Analytical and Experimental Fiudings

It is felt that the most efficient means of comparing theory
to actual experimental phenomena is by examining results concerning
each individual seal parameter separately and then attempt to draw

conclusicne from these comparisons,
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Interface clearance, The theoretical sealing parameters presented

earlier resulted from the assumption that both sealing surfaces were
smooth and mutually parallel. Experimental results indicate however
the possibility of the rotating seal's spin axis being at an angle
other than the normal with the rotating sealing surface. Also,
predicted results are based upon the assumption that both sealing
surfaces are perfectly flat where in actuality sealing surface out-of-
flatness was of significant magnitude, particularly with that
concerning the surface of the stationary instrumented seal.

Since the mathematical model presented has no provisions which
consider deviations from sealing surface parallelism and smooth flat
surfaces, differences concerning clearance measurement in theory

and experiment should be expected.

Interface pressure. As illustrated in Figure 27, theoretical (both

temperature-dependent and temperature-independent fluid property
solutions) interface pressure data indicate a smooth parabolic shaped
pressure profile with no fluctuating components while experimental
results give evidence of oscillating interface pressures (average
pressures and their respective degree of oscillation are shown in
figures dealing with interface pressure). Figure 27 also shows that
at relatively liarge clearances and low speeds, average pressures
agree favorably with predicted results, both from the standpoint
of temperature-dependent as well as temperature-independent fluid
properties.

Figure 28 gshows the predicted pressure profile at a higher

speed and lower clearance. It is noticed that the theoretical
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solutions based on temperature~dependent and temperature-independent
fluid properties have significant differences when rotational speed

is high and clearance is low. Experimentally obtained interface

pressure at the innermost radius is consistently higher than both
theoretical methods indicate. At a radius of 1.5 inches, pressure
probes SP1l and SP3 seem to agree very well wtih the temperature-
dependent fluid property pressure profile. However, as Figure 29
shows, at a higher speed and lower supply pressure (which effects
temperature rige similar to low clearances), pressure probe SP5
ylelded an average pressure considerably lower than predicted values
while probes SP3 and SP1 agreed with the non~temperature~dependent
fluid property value. Similar to probe SP5, probe SP2 output fell
significantly lower than predicted. Note also that probe SP2
indicated a zero gage pressure at the lower end of its oscillationm,
As previously mentioned, this occurred during Run 17 as illustrated
in Figure 30. Probe SP2 as well as probe SPl indicated below
atmospheric pressures. Also shown in Figure 30 is the "generated
pressure' as indicated by probe SP5, which is above that of the supply

pressure.

Leakage rateg. Table VIII gives theoretical temperature~-dependent

and temperature-independent fluid property leakage rates as well as
experimentally determined leakage rates. As Table VIII shows,
experimental mass flow rates are consistently lower than those
predicted by theory. One interesting trend is that theory
predicts increasing leakage with increasing rotational speed which

agrees with experimental tests at high clearances (Runs 1 through 8).
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TABLE VIII

EXPERIMENTAL, TEMPERATURE-DEPENDENT, AND NON-TEMPERATURE~DEPENDENT FLUID
PROPERTY LEAKAGE RATE COMPARISONS (RUNS 1 ™ "™'CH 17)

Run  Supply Average RPM Leakage Rate (1bm/min)
No. Pressure Clearance Exp. TO TI
(psig) (yin.)

1 17.4 2858 0 0.168 0.194 0,194
2 17.4 2840 490 0.174 0.196 0.190
3 17.1 2953 980 0,178 0.233 U.214
4 17.1 3106 1515 0.183 0.295 0.256
5 41,0 3055 0 0.486 0.555 0.555
6 41,0 3043 505 0,499 0.550 0.550
7 41.0 3118 1000 0,499 0.618 0.596
8 41.2 3175 1510 0.519 0.690 0.640
9 87.5 3528 0 - 1.825 1.825
10 41.5 2282 0 0.207 0.234 0.234
11 36.1 2238 505 0.180 0.200 0.193
12 33.8 2378 1020 0.175 0.244 0.218
13 34.4 2564 1520 0,171 0.330 0.283
14 20.8 1995 0 0.058 0.078 0.078
15 20.0 2022 515 0.058 0,088 0.079
16 19.5 2194 1015 0.056 0.122 0.099
17 19.2 2401 1520 0.053 0.174 0.132

Exp = experimental; TO = properties temperature-dependent;
TL = properties temperature—~independent.
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However, at low clearances (Runs 10 through 17), it seems t.aat leakage
decreases with increasing seal rotatlonal speed which, in turn,

causes substantial differences when comparing experimental and
theoretical values.

However, as shown in Table VIII(page 83) theory and experiment do
agree with respect to increasing leakage as supply pressures increase
and also in that leakages decrease as clearances decrease. Table VIII
also shows that differences between theoretical and experimental

leakage rates increased with increasing supply pressure.

Torque. As previously mentioned, theory predicts no torque
fluctuation while experiments give evidence that small torque
oscillations did occur, However, it is felt that the observed torque
oscillations occurred due to vertical load effects on the torque
strain gages. Since pressure fluctuations did take place which in
turn caused vertical load os¢tllations, it is entirely possib’ that
these load oscillations would have an effect on torque output.

Figures 31, 32, and 33 show theoretically determined torque
as a function of clearance at different seal speeds and supply
pressures. Superimposed on these plots are experimentally determined
torque values (torque values found during Runs 11 through 13 have
been omitted due to obviously erroneous results caused again by
vertical load effects)., It is seen that results between experiment
and temperature~dependen: fluid property values agree quite
favorably, especially at low seal speeds. However, as seal speeds

increase, so do the differences between theory and experiment, These

AT L I ol 2N e 00 R 0 R G 8 0 et T




m x 10°
4 6 8 10
12 | : ' ' ' '
_____ Properties temp.”
! independent
1 T \ ———Propertics temp.-
\ dependent 41.2
10 f \ A 490 rpm (Run 2)
\ ® 980 rpm (Run 3)
9 } \ ® 1515 rpm (Run 4) 11.0
\
8 T \
\ \
7 b \ \ P 17.2 psig 4 0.8
’;u \ \
- \ \
L BT \ \
3 \ b ” “ 006
g 5T b \
E‘ \ N
N
3 P \ N 1515 rpm
L
3
o
330
o
[e)
=
2 o
l -
490 rpu
i 'l 1 i
1 2 3 b4
Film thickness (in. x 10%)
Figure 3l. Seal Torque v8 Clearance (Runs 2, 3, and 4).

85

N - m




m X lO5

Total seal torque (in.-lbg)

[\ ]

L 1

4 6 8 10
L A | L4 \J
Propertlics
""" Temp.-independent
\ Frope:ties
\ Temp .~depeudent 1.2
\
\ A 505 rpm ‘Run 6)
\ ® 1000 rpz {Fm 7;
\ ® 1520 rpm (Fun 3) 1.0
\
\
. Po 41.0 psig
\
\ \ 0.8
\ \
\ \
\ \
\ \ A
\ h i
\ N
\ N
\ N
\ ~ 1520 rpm
10.4

Figure 32.

1 2 3
Film thickness (in. x 10%)

Seal Torqse vs Cluaranes (Runs: b, 7, and 8).

e it e A g S X




e

.
. A BT B SRR

Sy e e

[
.

Py

87
m x 10°
2 4 6 8 10
1] L) | J 1} L]
| - \ Properties
Y S temp. -independent
11 | \ ——_ Properties
\ temp.-dependent | 1.2
10 | \ A 515 rpm (Ruu 15)
\ ® 1015 rpm (Run 16)
e S \ ® 1520 rpm (Run 17) 11.0
\
\ \
8L \ \
W P = 20.0 psig
=7} \ v ° 40.8
3 :
6 [
g =
: 0.6
O - L]
] 5F
~
o
@
I
o
8 4 0.4
3L
r J 0.2
s 1015
A e
1}
515 rpm
A A 1 A
1 2 3 4

Film thickness (in. x 10°)

Figure 33. Seal Torque vs Clearance (Runs 15, 16 and 17).




o B A b

-

BT

|

Cromos mon

88 -
figures show also that torque increased as seal rotational speed

increased and that torque increased as clearance decreased.

Vertical load. Table IX shows vertical loads determined

experimentally and also those predicted by theory. As Table IX
illugtrates, experimentally obtained loads were; in most cases, lower
than those predicted. However, experimental values were occasionally
slightly higher (Runs > and 6, high clearance and supply pressure).
From these experimental runs, it seems that differences between theory
and experiment decreased as supply pressure increased.

Numerical results indicate that losding decreases with
increaging seal speed. Experimental evidence supports this somewhat
but not consistently. Also, experimental findings lead to the
consideration that loading is not strongly dependent on clearance or
speed but mostly depends upon supply pressure which theory also

indicates.

As mentioned previously, small load fluctuations were noticed
at low clearances and high speeds. The mathematical model presented
does not predict this experimentally observed phenomena; this
should be expected since pressure oscillations are also unpredictable

employing the presented model,

Interface temperature. Theoretical interface temperature

profiles indicate fluid temperatures are greater towards the

outer seal periphery. Figure 34 illustrates this along with typical
experimental results at low clearances. However, as Figure 35 shows,
at high clearances, the time involved in heating up the seal is

longer, thus causing conduction back towards the seal centerlime,
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EXPERIMENTAL, TEMPERATURE DEPENDENT, AND NON~-TEMPERATURE-~DEPENDENT FLUID
PROPERTY VERTICAL LOAD COMPARISONS (RUNS 1 THROUGH 17)

—

Run  Supply X&erage RPM Vertical Load (1b¢)
No. Pressure Clearance Exp. TO TI
(psig) (uin.)

1 17.4 2858 0 96.2 118.,7 118,7
2 17.4 2840 490 87.5 117.7 118.6
3 17.1 2953 980 96.2 113.2 116.3
4 17.1 3106 1513 91.8 110.8 115.8
5 41.0 3055 0 296.,9 279.9 279.6
6 4140 3043 505 303.4 28l.4 279.5
7 1.0 3118 1000 275.1 276.4 279.3
8 41,2 3175 1510 270.7 2729 280.1
9 87.5 3528 0 523.9 598.4 596.8
10 41.5 2282 0 279.1 283.4 283.0
11 36.1 2238 505 210.4 243.4 246,1
12 33.8 2378 1020 171.8 222.6 230.1
13 34.4 2564 1520 171.8 223,2 233.8
14 20.8 1995 0 - 141.9 141.9
15 20.0 2022 513 - 131.3 136.3
16 19,5 2194 1013 - 125,2 132,6
17 19.2 2401 1520 - 118.7 130.1

Exp = experimental; TO = properties temperature-dependent,
TI = properties temperature-independernt,
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This was especially true towards the end of each testing period. 71 '
Figure 36 shows temperature results ohitained after the seal had B
been rotated at 1500 rpm for about one minute, stopped, and then

allowed to cool down with fluid still flouing at zero rpm. As

Figure 36 illustrates, conducticn has taken place due to the

temperature difference between outer and inner radii.

1t should be noted that the experimental temperature data which
are used in Figure 36 were not obtained during runs which are presented
in this investigation. Data concerning Figure 36 were obtained

primarily to study fiow rate values as the test seal cooled down.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATTIONS

As evidenced in Chapter V, significant differences between

numerical predictions involving temperature-dependent and temperature-

t' independent fluid properties arise if sealing conditions exist such

that temperature rise across the seal face becomes appreciable. It

§ is felt that the analytical approach taken regarding temperature-
! dependent fluid properties would suffice if laminar flow and non=-

boundary lubrication conditions existed and also if the two sealing

|

g‘ surfaces were perfectly flat, aligned, and smooth. However, as
_f shown by the experimental results concerning pressure and clearance j
fluctuation, conditions of seal face parallelism and flatness did not
exist during the experimental testing. Therefore, it is concluded

that ch; analytical approach described in Chapter II i{s an over-
simplification of the flow phenomena which is actually occurring.

It seems that an input variable councerning clearance as a function

of angular position (witl respect to the rotating surface) would be

a more realistic condition in regard to the observed experimental

data. Sneck (20, 21) did analytical studies of face seals considering
sealing surface eccentricities and tangentially varying film thicknesses
but ~ssumed however that fluid properties were not affected by 1
3 temperature across the seal face. As suggested above, consideration

of sealing surface imperfections is certainly more realistic than

9% ;
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assuming ideal conditions prevail. Therefore, the coupling of Sneck's
work plue the ~~mperature-dependent fluid property model described in
this investigation would yield yet a new model closely resembling
the actual flow situation. Also, sirce fluid specific heat (Cp)
is temperature-dependent, . mathematical relationship needs to be
developed such that any variation of this property (due to
temperature) can be accounted for.

Temperatures calculated by the computer program are actual
fluid temperatures whereas temperatures experimentally determined
are the seal face diaphragm temperatures., Since the experimental

data point to the possibility of heat conduction within the seal

face, the program also needs to be modified such that any temperature

time dependence concerning heat conduction within both seals can be

accounted for., i
The experimental test seal employed in this investigation was

somewhat larger than commercias "off the shelf" radial face seals.

Also, both surfaces were made of stainleass steel. It is recognized

that this is basically a disparity with respect to past experimental

investigations since previous test seals were constructed of carbon.
However, a test seal composed of a carbon compound is under
consideration where the basic concern is with respect to thc inductance
clearance probes; i.e., clearance probe sensitivities will have to

be of the same order of magnitude as those determined in this

study ewploy’ng a stainless steel test seal.
Experimental run times during any particular testing period

never exceeded three to four minutes. Thus, the condition of thermal
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= i St ek i s aad. S NIRRT
i, S s



R e A i TP

o

e e g N 0

96
equilibrium was not reached during any test. In effect, this means
that the seal (both rotating and stationary) could actually have been
thermally expanding during testing. The manner in which seal piece
thermal expansion would take place is of prime importance when
operating at low clearances and high rotational speeds. It is
therefore recommended that tests be carried out for longer periods
of time in order to study any possible thermal growth of the ‘est
seals. Since this thermal expansion could possibly result in the
destruction (i.e., seizure) of the test seal apparatus, the above
tests are necessary before any low clearance (1000 micro-inches or
less) data can be obtained with reasonable safety,

The basic dat.a acquisition system has proven to be extremely
adequate in its ability to record numerous experimental parameters.
With exception to torque sensitivity to vertical load, all transducers
performed adequately daring testing. It is therefore recommended
that, if feasible, torque strain gages be installed such that an
applied vertical load would have a nominal effect on torque output.

Pressure probe installation proved to be more difficult than

originally estimated. The probes themselves were found to be extremely

delicate with respect to the wire leads which are attached to the
strain gage. Also, the author is not convinced that pressure probe
diaphragm thicknesses are consistently 0.005 inch. As previously
mentioned, one probe was dns;royed during the installation process
because the probe's diaphragm was apparently lapped off. It is
believed that the probe's initial diaphragm thickness (prior to

lapping) was not more than 0.003 inch since, at the time of

T et . o
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installation, the seal face was estimated to be not more than 1000
1 micro-inches out of flat., Nevertheless, if new pressure probes are

to be installed, it is recommended .hat the seal face be lapped as

flat as possible prior to probe installation to guard against any
adverse conditions concerning the installation procedure.

It is believed that the clearance probes employed during this
investigation are temperature sensitive. This possible temperature
gensitivity needs to be investigated with respect to future investi-
gations, Work is currently being directed toward this goal and results
should be invaluable when operating at realistic face seal clearances
and high rotational speeds.

The clearance probes used in this investigation were found to

be much less pressure sensitive than those employed by Kiber (10).

It is believed that this reducticn of pressure sensitivity was
primarily due to two differences in the basic seal design: (1) a
machined-in-place diaphragm was employed in this study whereas Kiber
used a diaphragm which had been epoxied to the seal face, and (2)
Devcon Aluminum Putty provided a clearance probe adhesive in this
investigation while Kiber employed a commercial epoxy.

As discussed in Chapter V, fluctuating pressures and clearances
could have been due to the "wobble'" in the rota-ing seal piece.
To reduce the magnitude of this '"wobble," it is suggested that the
rotating seal be removed from the air spindle and checked for
parallelism between sealing surface and the air spindle mounting
surface. After this is accomplished, re-installation of the
rotating seal should be carried out very carefully, i.e., to be

confident that both pieces fit together properly.
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From a physical standpoint, it certainly seems more realistic
to assume that fluid properties would vary with temperature across
the seal face. However, insufficient experimental evidence was
gathered to substantiate this assumption. Therefore, it is
recommended that tests be carried out at lower clearances in order
to validate the temperature-dependent fluid property theory.

The overall purpose of this thesis was to present face seal
analyses from both analytical and experimental aspects. Substantial
amouuts of data have been presented and it is believed that implementation
of the suggestions given, particularly those concerning the integration
of Sneck's (19, 20) model and the model presented in Chapter II,
could very well result in a complete and accurate interface region

description concerning a radial face seal.
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APPENDIX A
COMPUTER PROGRAM

The FURTRAN IV computer program employed in this investigation
is given below. The program considers the possibility of temperature-
dependent fluid properties as the fluid flows across the seal face.
Program input consists of supply pressure, seal rotational
speed, and average clearnce. It should be noted that no provision
has been made for the possibility of wavy seal surfaces or any time-
dependent heat conduction within the sealing surfaces themselves.
Typical central processing unit run time for "moderate"
sealing conditions (low speed, medium clearance) was approximately
30 seconds. However, at low clearances and supply pressures, run

time often exceeded two minutes.
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APPENDIX B

CLEARANCE PROBE INSTALLATION PROCEDURE

N

The following is the suggested step-by-step clearance probe

[

installation procedure which was utilized in regard to the

experimental portion of this investigation. From the performance

M
[S—

of the test seal employed, the procedure below has proven to be an

esgsential asset as far as clearance probe pressure sensitivity is

]

concerned. It should also be pointed out that the adhesive compound

F N
PSS

(Devcon Aluminum Putty) utilized was instrumental in being able to
. succeasfully machine the 0,005~-inch diaphragm to the required
tolerances.

The recommended installation procedure is as follows:

1. Construct the desired type thermocouple with leads
! approximately 15 feet in length.
2. Mix up a substantial amount of Devcon Aluminum Putty

without thinner,

ey T
v

| ! 0 3. Place thermocouple inside the clearance probe making
; sure the thermocouple i8 at the bottom of the clearance

probe,

bt 4, With a plastic syringe, inject Devcon Aluminum Putty along-
! side the thermocouple.
- S. With remaining Devcon, fill test c2al clearance probe

. - hole about 1/4 full,
125
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6.

9.

126,

With small tweezers, carefully grasp top of probe and
insert into test seal hole, being careful of wires.
With the probe vertical and on the bottom of test
seal hole, grasp tweezers with holder to hold steady.
Allow this assembly to dry (approximately 24 hours).
Fill hole completely (if necessary) to protect probe

and wires.

10. Allow to dry for 24 hours,

" i . s
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APPENDIX C
CALIBRATION RESISTOR (RCAL) CALCULATIONS

Actual Rba valueg utilized in this investigation are given

1
below. It should be noted that Rbal values are actually Rbal +
R.a where R.a is the resistance of one arm of the bridge employed.
However, in all cases considered, R, values were insignificant when

Eompared to values of R, ..
3 ¢cal
Vertical Load

Maximum indicated strain = 575 micro-inches per inch.
Let 5-inch gaivanometer deflection = 600 micro-inches

per inch,

mw

(c-1)

[ |
g5

Since R.cal = =

B

where
R.a = regigtance of one bridge arm
F = gage factor
A% = maximum indicated strain
E = bridge excitation voltage
M = input parameter concerning amplifier balancing

then for a 5-inch deflection,

. 190 .
= = 99.89 KN

R'cal -
(3.17) (600 x 10 )

127
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128
But the actual resistor value was found to be 99.31 K. Thus,
solving for M in Equation (C-1) with E = 4,00 volts,
M=1,909 oV
A 1,909-mV input to the A20B amplifier should produce a 5.0-inch

deflection.
Torque

Maximum indicated strain = 30 micro-inches per inch.
Let 5-inch galvanometer deflection = 30 pin./in. Then, from
Equation (C-1),

R 378.8

a1 " —— = 119.57 K2
(105.6) (30 x 10™°)

Actual R value = 117.57 KQ
cal
Thus, with E = 8,00 volts,
M= 6,42 oV,

The A20B amplifier should be balanced such that ap input of 6.42 mV

produces a 5.0-inch deflection.

Supply Pressure, SPl, SP2, SP3, SP5

Maximum indicated strain - 522 micro-inches per inch.
Let 4-inch galvanometer deflection = 522 micro-inches per inch.

Then, from Equation (C-1),

120

R = - 1140014 KQ
cal - (9)(522 x 10

%)

Actual zupply pressure Rhal value = 114.5 KQ

Los b SR e B e - e
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Actual SPL R__. value = 115.65 K2
cal |
o Actual SP2 R__, value = 115.06 KQ -
cal .
i Actual SP3 R__. value = 115,17 KR
; cal
Actual SP5 R__. value = 114,90 KR
. cal 1
i Thus, for E = 4,00 volts, the A20B amplifiers should be balanced
such that the following voltage inputs produce a 4.00-inch deflection:
. Supply pressure: M = 10,48 mV
[ SP1: M = 1,046 mV ;
1 o
SP2: M = 1,052 mV 3
} SP3: M = 1,049 mV s
SP5: M = 1.054 V. ;
i 3
Note: Since during the final test seal lapping process probes SP1,
; SP2, and SP5 were made over-sensitive, the above calculated values
| of voltage input were too high. Therefore, the previously balanced ]
: amplifier gain was reduced such that the maximum observed pressure ?
i would not drive the galvanometer trace off the paper. Reducing
L the amplifier gain also meant reducing the R.a1 deflection in q
proportion to the gain reduction.
! - :
s
-
{ I3
i
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APPENDIX D
CALIBRATION CURVES

Calibration curves of all external transducers (except
thermocouples) are presented in this section. Also, calibration
data in regard to the gage glass flow indicators are shown.

in Figures 37 through 49.
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Figure 38. Pressure Probe SP1l Calibration Curve.
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Figure 41, Pressure Probe SP5 Calibration Curve.
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APPENDIX E

PO

CLEARANCE PROBE PRESSUKE COMPENSATION-DETERMINATION OF
ACTUAL CLEARANCE PROBE MOVEMENT

The method of determining actual clearance probe movement due
to movement of the upper seal piece due to pressure is given in this
section, The method basically involves finding the equation of a
plane from three points makirg it possible to determine the coordinates
of any point within that plane.

The clearance measured at zero pressure was taken as the
reference plane. At each pressure, the upper sealing surface took

on a different planar position (with reppect to the refereuce plane)

determined from the three probes of each external clearance indicating
system. Since any three points determine a plane, the planar position
of each clearance probe could be determined at each pressure, thus
determining the actual movement of the upper sealing surface.

It was noticed that the Bentley-Nevada system produced less
gscatter in the '"delta clearances" when compared to those determined
from the Shefield system, although similar trends existed between
the two methods. Thus, Figure 18 (page 5B) was produced from points

found employing the Bentley-Nevada system.
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! pressurss rsnged from 17.1 to 87.5 psig (1.18 x 10% to 6.03 x 10% N/ad mildlgversge 1
P! clesrancss snd rotstional speeds ranged from 1995 to 3428 micro-inmchv's (50.7 tb 89.6 4
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values agreed somevhat with predictions slthough significant diffsrences wers noticed
at high speeds and low clearances.
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